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The question of finding the asymptotic values of the relative elec-
tron concentrations obtained when the gas temperature and pressure
along the streamliner are reduced naturally arises in a number of prob-
lems in ionized-gas dynamics. An example of such a problem is that
of the flow of a low-temperature plasma in a divergent nozzle. In this
case, the velocities of all elementary processes approach zero in pro-
portion to distance from the critical section of the nozzle, due to the
marked temperature and pressure drops in the nozzle, Hence, it fol-
lows that the relative electron concentration must approach some con-
stant value, which is called the frozen concentration. The study of
these processes is of great importance as applied to rocket-engine
nozzles [1] and magnetohydrodynamic equipment.

§1. Statement of the Problem. In many cases, the
equation describing the kinetics of variation of the re-
lative electron concentration x along the streamline
can be written as
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where t is the time reckoned along the flow line; z is
the coordinate read along the streamline; v is the gas
velocity; n is the total number of gas particles per
em?®; ne is the electron concentration. The quantities
w and « are interpreted in relation to the set of ele-
mentary processes determining the electron kinetics.
For example, for the set of elementary processes
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we have
W o== kyZanxy, o= kn¥ry, (1.3)
ky = ay (T} exp{— E,/kT),
or
w = Ekytaxgn, o =ky'n,
ky == ay (T) exp (— E,/kT). 1.4)

Here, kj and ki (i = 1,2) are the rates of the for-
ward and reverse reactions, respectively; xA, xB,
and x)\ are the relative concentrations of the reacting
particles A, B, and M; T is temperature.

The subscript 0 will subsequently denote all values
corresponding to the reference time t = 0, which we
make correspond to the critical section of the nozzle.
Then %y can be assumed to coincide with the equilib~
rium concentration, i.e.,

Tg = Vwo [y . (1.5}

If we introduce the electron concentration referred
to by its initial value £ = x/x, and let the time t be ex~-
pressed in units of the characteristic time 7 of gas

flow, Eq. (1.1) can be rewritten as
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where 7* is the time for establishment of an equilib-
rium-concentration.

The functions ¢, ¥, and G in (1.8) are assumed to
be dependent only on the temperature T, and we as-
sume that the temperature dependence of the recom-
bination coefficients has the form kj ~ TV (v = 5/2
for a monatomie gas [2], v = 7/2 for nondipole mole~
cules {3], v = 9/2 for a gas withdipole molecules [4,57);
ky ~ TV, 1/2 <v < 3/2. We assume that the coeffi-
cients ki and ki’ are related by the principle of detailed
balance.

Remarks. The principle equation (1.1) above holds under the fol~
lowing conditions.

1. The effect of electron processes on the gasdynamics of flow is
negligible, since the charged-particle concenuations are low under
the conditions in question. This allows us to assume that all gasdy-
namic flow parameters (the distribution of pressure, temperature, and
velocity) are given, i.e., to construct the kinetics of the electron
processes from those solutions of equations of chemical gasdynamics
obtained when electron processes are ignored.

It should be noted, however, that in the special case of a mon~
atomic gas and at the very low temperatures produced when the gas
expands, we must take into account the temperature-increase effecrs
resulting from the recombination of electrons and positive ions [6].

In the case of a monatomic gas, final residual ionization in the gas is
brought about only by the above-mentioned effect of joining of elec~
won and gasdynamic processes. In a number of cases important in
practice, this is not of great significance, since in the region of gas
flow that is of interest (for example, up to the nozzle section), the
temperature does not drop enough to make this effect significant. We
shall ignore this effect below.

2. A plasma in low-temperature jets can be considered quasi~
neutral, i.e., in each elementary volume the number of negatively
chaiged particles equals the number of positively charged particles,
This condition is violated only with very high pressure gradients.

3. Under the high-velocity conditions of gasdynamic wansport
that we are considering, the diffusion of electrons (and, all the more,
of heavy particles) can be ignored (the ratio of the velocities of dif-
fusion and gasdynamic electron flows is approximately equal to
De/vL = vele/VL <« 1, where Dg is the coefficient of ambipolar dif-
fusion, g is the electron mean free path, vg is the electron velocity,
and L is the characteristic dimension of the nozzle). This allows us to
write the kinetic equations as differential equations of the type of (1.1),
which represent the balance equation of the velocities of gasdynamic
transport and the velocities of elementary processes in which electrons
participate for each streamline.

4. The electron temperature can be considered equal to the heavy-
particle temperature. For example, in liquid-fuel rocket nozzles, the
electron-temperature relaxation time, which is chiefly connected with
vibrational-rotational molecular excitation, is very small. In fact,
in order of magnitnde this time T¢ & 1/0 venw, where o is the elec~
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ron-scattering cross section and w is the probability of energy transfer
(on the order of kT) in one electron-molecule collision, i.e., w &

~ 1072, When n =~ 10%® cm™®, we have Te @107 sec, f.e., T is
usually less than the other effective relaxation times that figure in
kinetic equation (1.1). Therefore, in the reaction rates of the ele-
mentary processes in which electrons participate, the electron tem-~
perature can be considered equal to the heavy-particle temperature.

It should be noted that indications have appeared recently that the
electron-temperature relaxation time can, in fact, be considerably
higher than that given by the relation 7, ® 1/0 venw. This is due to the
fact that electron scattering by molecules can produce long-lived quasi-
stationary rotationally excited states. In some cases, therefore, the
electron temperature, even in liquid-fuel rocket nozzles, can differ
substantially from the heavy-particle temperature, This does not affect
the following discussion, since it leads only to a slight redefinition of
the functions ¢, ¥, and G in (1.6).

A great number of papers have been devoted to the
freezing processes described by (1.1), but these pa-~
pers employ only numerical methods or methods re-
sulting solely in rough estimates [1,7,8].

In contrast, the present paper gives a consistent
analytic theory of the freezing processes described by
Eq. (1.6). This theory is based on the sole assump-
tion that € = kT;/Ej << 1 (i = 1,2), which can usually
be considered to be fulfilled. In fact, the ionization
energy Ej is usually several eV, and T, does not ex-
ceed a few thousands of degrees in the equipment usu-
ally employed. As a rule, therefore, & < 0.1,

§2. Mathematical Study of Eq. (1.6). Let us re-
write (1.6) as

A% =g (1) exp (—%igdt)—w)& (2.1)

and introduce the derivative g(t) of the function G(t).
We examine (2.1) under the initial condition

§(0) =%

Generally speaking, Eq. (2.1) cannot be integrated
inelementary functions. Therefore, we mustuse asymp-
totic methods and rely on the presence of the param-
eters A and €. Mathematically, we consider the param-
eter £ to be infinitely small, and A can be either finite
or infinitesimal and can have any order of smallness
relative to €, i.e., €/A can approach some finite limit,
infinity, or zero.

The problem consists in constructing the asymp-
totic form of the solution of (2.1) and (2.2) in € and A,
and, in particular, in the asymptotic representation of
Lim £ (t,&,A) = £.(g,A) as t — =, i.e., the frozen con-
centration.’ '

The properties of the solutions of (2.1) and (2.2) and the nature of
the asymptotic form differ considerably, according to the relations
between the parameters ¢ and A. Therefore, the cases in which ¢ =X
and € > \ will be considered separately. The main text gives a mathe-
matical formulation of the results in the form of asymptotic formulas.
Some aspects related to the proof of these formulas are referred to in
the supplement. The conditions on ¢, 3, and G under which this
asymptotic form is valid are listed there.

First case: € = A, in which € — 0, and A can re-
main finite or approach zero more slowly than €, or
they can be on the same order of smallness as €. In
this case, for £(t,&,A) we have the uniform asymptotic
representation

(2.2)
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Here, Ij(s) and Kj(s) (j = 0,1) are Bessel functions
of an imaginary argument,

s:2xexp%§0“,
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The conventional symbol for values that have the
order of smallness &2 is O(e?). The bound of the re~
mainder term O(e?) is uniform in t over the entire in-
finite interval 0 =t < <,

From (2.3) we can derive an expression for the fro-
zen concentration £_(e,A), using the asymptotic form
of the Bessel functions as s — =, This expression has
the form (Cg is Euler's constant):

B, ) =4 [P (0, ) + 2o (0 ) —
(2.6)
— Cy—1Inx)+ 0(82):!_1

Now let us consider the various possible relation-
ships between € and A.

a) Let ¢ ~ 0 and £¢/A — 0. In this case, ® — 0,
the argument of the Bessel functions in (2.6) is small,
and, again using the asymptotic form of these functions
at small values of the argument, we have, after some
calculations,
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If A is finite,
A 9 (0) A/ Eo? 9
THTY0 e @ aTe v e E T O (2.8)

and if A is small,

A
foo = T (0, o)
U e ) 1 g2 (2.9)
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b) Let € = A — 0 (the case in which & and A have
the same order of convergence on zero can always be
reduced to this case). In this case, formula (2.6)gives
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Second case: € > A. Mathematically, this case can
be described as: A/e — 0, and eln(g/A) ~ 1. The lat-
ter relation means that A cannot approach zero too
quickly, i.e., limeln(e/A) =pase —0and A — 0.



Here, p is any (fixed) number. We assume that
eln(e/\) — 1 (since the case of p * 1 can be brought
to the case of p = 1 by a change of variables). The
frozen concentration will be given by the formula
=2 [ ¥ (e, )= 2o 0 m YEE) 200 ),
¢ £ (2.11)
where t° is determined by

X (2.12)

S

The superscript ° means that the functions g, ¢,
and ¥ are taken at the point t = t°. The symbol o(e) is
conventional for a quantity whose order of smallness
is higher than e.

§3. Calculation of Frozen Concentrations. On the
basis of the general formulas obtained in 82, it is easy
to calculate frozen concentrations for various depen-
dences of the gasdynamic values on the z-coordinate.
We give the calculation here for gas flow with the con-
stant adiabatic exponent y. For the flow of combustion
products in nozzles of liquid-fuel rockets this assump~
tion does not hold, strictly speaking, since the gas
composition varies along the nozzle. Nevertheless,
this assumption does not result in substantial errors
if as vy we take the quantity pertaining to the critical
section of the nozzle. This is because the frozen elec-
tron concentration is usually established at small dis-
tances from the critical section, at which y does not
have time to change substantially.

Under these assumptions, the relationship between
the gasdynamic parameters and the time t is given by
the well-known formulas [9]

T :
G =D (M), Li = M®-,

(=) M2
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where p is the gas density.

As the argument we take the Mach number M, which
is related to the coordinate z read along the nozzle
axis (and, therefore, to t) by

~Sfz) _ S . v+t
povo =M+ = S@ 8 PTagThe

where S is the nozzle cross section.
Specific numerical calculations were made when the
shape of the nozzle was given by the relation (Fig. 1)

o= 0, S~S,,+k2z2 S =0 Sy = ar?

% = arc tg (k/]/::r_c).

Therefore, in the above formulas we must let
818y =140 §=2L, L=nrjigd, v=1Llv,.

In the numerical calculations it was also assumed
that the kinetics of an elementary process correspond
to the first scheme of (1.2), in which the particle A is
an atom of an alkali metal. In this case, the relation-
ship between k; and k] can, on the basis of the de-
tailed-balance principle, be written as

By by = (27 (BmET)" exp (E\/kT).

In other words, in this case the functions ¢ and ¥

have the form
Q = (Lv-a/z~1/(‘{~l}’ Ap == 2/ G-

If we convert in the formulas of §2 to the indepen-
dent variable M, we must let
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The initial conditions have the form £ = £{M = 1) =
= 1.
For convenience, we infroduce the following:

i 9 _ % A — A
Y=y Vv 5
[ o g
CETm S gt

O =—expCgp=1.781...

Then, if we rewrite (2.6) in the new variables for
A'= g'and (2.11) for &' > A', we arrive at the follow-
ing standard working formulas

go={F (1 o0)+26[Q () — | <
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Fig. 2. Graphs of y as a function of !/ for v=?/, and
v =1.25 (curves 1, 2, and 3) and v =%/, and vy =1.15
(curves 4, 5, and 6).

With (2.1), we calculated y,, as a function of A for the following
four combinations of the parameters v and y:

W) v="ly="0% (@)v="0h y=125
B) Y = %y v = 1.20; (&) v = ¥y, y = 1.15

For each combination, calculations were made for &£ = 0.02, 0.04,
and 0.06, Combination (1) corresponds to ionization in a gaseous
medium of nondipole diatomic molecules similar to Ny under the as-
sumption that vibrational degrees of freedom are excited. Combina-
tions (2), (3), and (4) correspond to ionization in a gas of dipole mole-
cules similar to HyO. The calculated values are given in the table and
in Fig. 2. To check asymptotic formulas (3.1), Eq. (2.1) was integrated
exactly on a Strela computer for v =7/2, y = 9/7, and & = 0.04 and
for A = 10, 1, 0.2, 0.1, 0.02, and 0.01. The values of y_, so obtained
are in good agreement with the values of y,, given by (3.1). We thank
E. K. Gutkovich, E. V. Chebotaev, and V. M. Martynova for making
the calculations.

Figure 2 cah be used to make specific calculations of the frozen
concentration for all cases of practical interest. As an example, we
shall calculate the frozen concentrations in the combustion products
of a liquid-fuel rocket engine. In this case, the main combustion
product is HyO, and, according to [4], the first reaction of (1.2),
where M is an H,O molecule, can be considered asthe principalioniza-
tion process. With the expression for the recombination coefficient ky
given in {4,5], we have

o = ag® 2 N g kyngiey, k' = 834072 T

We assume that the water concentration does not vary substantially
along the nozzle. On the other hand, 1/ = oyTXg = OLUT(XA/klno)l/z.
If, in particular, we take Tg=2500° K, ng = 10%° em™3, 7= 10" sec,
and xy4 = 0.5, and if we assume that the primary process is the ioniza-
ton of sodium, i.e., the particle A is a Na atom, for which E; =
=5.14 eV, then ¢ = 0.04, oor = 1.1-10%, and 1/A = 2.3~ 10%x )2
According to Fig. 2, when xy = 107% and x4 = 2-107°, we obtain for
this example 1/A = 23, x 07 = 3, and, finally, x, =2.7" 10710,

We note also that on the basis of the general formulas of $2 a num-
ber of important qualitative conclusions can be drawn about the be~
havior of frozen concentrations as a function of the various parameters.
Particularly noteworthy is the fact the dependence of the frozen con-
centration X,, on the concentration of the easily ionized impurity x4
has (other conditions being given) an entirely different nature atsmall
x4, defined by the inequality

£/ % = ooV o lmg L4/ 8

and at rather large x4, defined by the inequality 1/A > 1/e.

In the former case, the frozen concentration x,, depends con-
siderably on xa (see (2.8), for example). On the other hand, as is
immediately clear from Fig. 2, this dependence is very weak when
1/A > 1/e.,

In other words, the condition 1/A = 1/g, i.e.,
E, [ KTy = Vwurv,

determines some critical value of XZ- beginning with which the fro-
zen concentration does not vary substantially. For the above numeri-
cal example, this critical value is xZ ~ 1078,

In conclusion, let us compare the exact formulas (2.68) and (2.11)
derived in this paper for frozen concentrations with the approximate
method (see, for example, [6], p. 447) usually used to determine X,
According to this method, at 0 =t = t; the concentration x, which is
determined by Eq. (1.1), has a quasi-stationary variation, i.e., X =
= Xeq = (w/ot)l/z, while at t = t; it is obtained by our integrating (1.1),
in which w = 0 is assumed, i.e., according to this estimate,

‘o0
A (t, 00) = ﬂ adt
t

The time t, is dictated by the condition that the deviation 8x of
the concentration from quasi-stationary, which is given by the for-
mula §x = —(1/20)d1n Xeq/dt, be approximately equal to Xeq.

Since the frozen concentration x,, is usually appreciably less than
Xeq(ty), Loe., Xeq(t)A(ty, ) » 1 and, therefore, X, = 1/A(ty, =),
while, on the other hand, the value of t; introduced here coincides
approximately, as is easily shown, with 7t°, where ° is determined
by (2.12), it follows that formula (2.11), if the term proportional to
& is ignored, gives a result that agrees in order of magnitude with that
obtained by the estimate usually used, which is given in[1,6, 8] and
which is valid when X < &, However, if & <)\, as can be seen from
formula (2.8) the expression for the frozen concentration differs greatly
from that given by the above-mentioned approximate method, and in
this case its use is entirely unjustified.

§4, Supplement, We indicate the main aspects of the proof of
asymptotic formulas (2.3) and (2.11),

First, let us list the main assumptions about those values in (2.1)
for which the mathematical theory was developed, These assumptions
are fairly natural from the point of view of physies.

1) The quantities ¢(t), ¥(t), and g(t) are positive and continuously
differentiable in 0 = t < e, 2) The quantity ¥(t) is uniformly bounded

Foo =28y () /(1 + %y {t) Aty )y

Table
Values of y« as a Function of 17\ for Various Values of v, vy, and &
172 0.1 1 5 10 50 100

y—-3.5 =002 0.07 0.53 1.27 1.65 2.04 9.% -
Zom  e=0.04 0.07 0.56 1.57 1.81 2.62 3.01
T=9T 0,06 0.07 | 059 | 1.85 | 2.0 3.28 | 3.88
vead5 E=0.02 0,07 0.5t .17 1.44 1.79 1.96
=105 e=0.64 0.07 0.54 1.48 1.62 2.29 2.60
Yo=2 & = 0.06 0.07 0.58 1.48 1.83 2.83 3.30
vs5 ©=0.02 0.07 0.57 1.52 1.95 2.71 3.11
“1a e=0:04 0.07 0.64 1,87 2.34 4,03 4.9%
T=2 g ==0.06 0.07 0.68 2,08 2.93 5.78 7.37
vemgp E=0.02 0.07 061 2.02 | -2.52 415 5.11
T =115 &=0.04 0.07 0.69 2.39 3.50 7.96 | 10.85
=1 £=0.08 0.07 0.82. 3.15. 5.32 14.78 | 21.55
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along with its derivative and approaches zero as t—> e« as a certain
power 1/t® (o > 1) (we write: P(t) ~ 1/t%), so that

<o

¥ (0, oo) = § B (1) dr.
o

We note that formula (2.3) remains valid when o = 1 (for exam-
ple, in the case of ionization in a monatomic-gas medium, when
9 =5/2 andy = 5/3). In this case, the frozen concentration is zero,
since ¥(0, =) = « (see remark 1 in §1), 3) The quantity ¢(t) ~ P(p =
= 0) and the quantity ¢@'(t) ~ tP™!ast — <o, 4) The quantity g(t) ~
~tmd(1=sqg<l)ast—> =,

First case: ¢ = A, Let us convert in (2.1) to the variable V = M /g,
whose equation has the form

v 0t ) (4.1)

1
= e —
Ao
V()= %
Let us compare with this equation the equation obtained from it
when we let t=0in ¢, ¥, and g:

gdit) + 9,

SOl

aU 0 g {0y ¢
= e (~ 0 Ly, -2

A
U(O)——-'—Ea‘

Theorem 1: For V there is an asymptotic representation uniform in
0 =t< e

V@)= {U @O —(©O -0 0]+8, (4.3)

i
¥ (0, 0=\
[

where |8] < Ge® (C is a constant independent of X and & when A and ¢
are sufficiently small).

The proof of this theorem consists of writing a differential equa-
ton for the difference A=V — (U — y(0)t+ ¥(0,1)), of subsequent
conversion to an integral equation, and ob obtaining from the latter
an inequality for A by the so-called method of a priori bounds.
Since we cannot give this proof here, we shall briefly explain the idea
of approximate replacement of V by the expression U — ¥(0)t + ¥(0,t).
It is intuitively clear that o0 = V = ¥(0,t) and 8 = U — $(0)t must be
similar values, In fact,

t

do @ (L) { gdi

& T T T Vﬁe"p(_)—e_%.
0

dg 2(0) g (0)¢

T ‘——hrUexp(-— = )

Yet in view of the smallness of & (sharp decay of the exponent) in
the preexponential factor and in the exponent itself, the quantities can
be replaced by their initial values without substantial error, Then the
right-hand sides of the equations for o and B will have, respectively,
the forms

0 0)t
— ‘P}f2) VZ(O)P,Xp <_%)’

P (0)
1

(0) exp <—

£(0)i )
ra i
and since V(0) = U(0) = \/&,, then da/dt =~ dB/dt, i.e., o =~ B, and
this is actually expressed in (4.3),
The approximate expression (4.3} of V in terms of U is rational,
because Eq. (4.2) is integrated in Bessel functions of an imaginary
argument, that is, U has the form

P(0) Clo(s)+ Ko(s) 7 (0) 4.4
Y 'l/ q)(()) (/I] G AT) exp Se i, ( )

where ¢ and C are given by formulas (2.4) and (2.5}, If we substitute
(4.4) into (4.3) and consider that § = A/V, we arrive atuniform asymp-
totic representation(2.3) for &(t, g, A).

Second case: A < &, eln(e/\) ~ 1. The following procedure can
be used in this case. Beginning with time t = t°, where t° is defined
by (2.12), we introduce the new function 7 = (e/A\)§, Then Eq. (2.1)
is written as

3 e

d {1
&g =9(t)exp{— —\¢ dt) — P89 (4.5)

o

s

Equation (4.5) will, in essence, be an equation of the type A = ¢
already examined, provided that we take t = t° as the initial point.
Therefore, all the preceding reasoning can be applied to Eq. (4.5),
i.e,, we can use the fact that when t = ¢° the main role in the ex~
pression exp (=~1/s gdt) is played by times that are close to t°, and,
therefore, the solution can be expressed in terms of the solution of
the auxiliary equation obtained from (4.5) if in it we let

PN =) =9 Y =Pp{)=1"

gdt =g (1) (t —t°) =g°{{ — 1°)

o
i o

In this case, however, a question arises about the formulation of
the modified initial condition n(t°) = n, for Eq. (4.5)., Without giving
its derivation, the final result is

ni(cp)/’fﬁ Voy /e
T KV

If we reproduce under this initial condition all of the reasoning
that led to (4.3) and consider that A = ¢, we obtain (2.11) for & .
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