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1, 

The question of finding the asymptotic values of the relative elec- 

tron concentrations obtained when the gas temperature and pressure 
along the streamliner are reduced naturally arises in a number of prob- 
lems in ionized-gas dynamics. An example of such a problem is that 
of the flow of a low-temperature plasma in a divergent nozzle. In this 
case, the velocities of all elementary processes approach zero in pro- 
portion to distance from the critical section of the nozzle, due to the 
marked temperature and pressure drops in the nozzle. Hence, it fol- 
lows that the relative electron concentration must approach some con- 
stant value, which is called the frozen concentration. The study of 
these processes is of great importance as applied to rocket-engine 
nozzles [1] and magnetohydrodynamic equipment. 

w  Sta tement  of the P rob lem.  In m a n y  eases ,  the 
equation d e s c r i b i n g  the k ine t i c s  of var ia t ion  of the r e -  
la t ive  e l ec tron  concentrat ion  x along the s t r e a m l i n e  
can be wr i t ten  as 

d'~" = w ( t ) - - a ( f ) Z ~ - d t  ( t ~ I ~ , ~ ' = @ ) ,  (1.1) 

where t is  the t ime reckoned  along the flow l ine;  z is 
the coordinate  read  along the s t r e a m l i n e ;  v is  the gas 
ve loc i ty ;  n is  the total number  of gas p a r t i c l e s  per 
era3; n e is  the e l ec t ron  concentrat ion.  The quant i t ies  
w and a are in terpre ted  in re la t ion  to the se t  of  e l e -  
m e n t a r y  p r o c e s s e s  d e t e r m i n i n g  the e l ec tron  k inet ics .  
For  example ,  for the se t  of e l e m e n t a r y  p r o c e s s e s  

tk~ ~x 
+'M,(-~A. + a + M ,  or A - b B ~ A B * 4 ~ e  (1.2) 

we have 

w -~- kixAnx~,1, ck ~ .  kt'n~xM, 

kl ~= :a.i (T)exp ( ~  E / k T ) ,  

(1.3) 

o r  

tO ~ -  ]g2XAZ~i$~ CZ ~ -  kz'n, 

k~ ~ -  a~ ( T )  exp (-7 E~/kT). (1.4) 

Here ,  ki and ki ~ (i = 1 ,2 )  are the rates  of the f o r -  
ward and r e v e r s e  r e a c t i o n s ,  r e s p e c t i v e l y ;  XA, XB, 
and XM are the re la t ive  concentrat ions  of  the reac t ing  
p a r t i c l e s  A, B, and M; T is  t empera ture .  

The s u b s c r i p t  0 w i l l  subsequent ly  denote all  va lues  
corre spond ing  to the r e f e r e n c e  t i m e  t = 0, which  we 
make  correspond  to the cr i t i ca l  sec t ion  of  the n o z z l e .  
Then x 0 can be a s s u m e d  to co inc ide  with the e q u i l i b -  
r i u m  concentrat ion ,  i . e .  , 

�9 ~"0 = V~o/:~:,  . ( 1 . 5 )  

If we introduce the e l ec t ron  concentrat ion  r e f e r r e d  
to by its  in i t ia l  va lue  ~ = x / x  0 and le t  the t i m e  t be e x -  
p r e s s e d  in units  of the c h a r a c t e r i s t i c  t i m e  ~- of  gas 

flow, Eq, (1.1) can be r e w r i t t e n  as 

kd~/dt = (9 ( t ) exp[ - -G( t ) . ' e l - -~ ( t )~2  (~ =~,/v) 

1.,  _ i w ~ T o -  T 

V ~  ' ~ =  w-:' , = - - ~ o  , c -  T , (1 .6 )  

kTo ~i s = ~  = 1 , 2 ) ,  ~ ( 0 ) = ~ ( 0 ) = i  C ( O ) = O ,  

where r*  is the t ime for e s t ab l i shmen t  of an equ i l ib -  
r i u m - c o n c e n t r a t i o n .  

The funct ions q), r and G in (1.6) a re  a s sumed  to 
be dependent  only on the t e m p e r a t u r e  T, and we a s -  
sume that  the t e m p e r a t u r e  dependence of the r e c o m -  
binat ion coeff icients  has the fo rm k~ ~ T -v (v = 5/2 
for a mona tomic  gas [2], v = 7/2 for nondipole m o l e -  
cu!es [3], v = 9/2 for a gas with dipole molecu les  [4,5]); 
k~ ~ T -v ,  1/2 < v < 3/2.  We a s sume  t h a t t h e  Coeffi- 
c ients  ki and k~ a re  r e l a t ed  by the p r inc ip le  of deta i led 
balance.  

Remarks, The principle equation (1.1) above holds under the fol- 
lowing conditions. 

1. The effect of electron processes on the gasdynamies of flow is 
negligible, since the charged-particle concentrations are low under 
~ e  conditions in question. This allows us to assume that alt gasdy- 
namic flow parameters (the distribution of pressure, temperature, and 
velocity) are given, i . e . ,  to construct the kinetics of the electron 
processes from those solutions of equations of chemical gasdynamics 
obtained when electron processes are ignored. 

It should be noted, however, that in the special case of a mort- 
atomic gas and at the very low temperatures produced when the gas 
expands, we must take into account the temperature-increase effects 
resulting from the recombination of electrons and positive ions [6]. 
in the case of a monatomic gas, final residual ionization in the gas is 
brought about only by the above-mentioned effect of joining of elec- 
tron and gasdynamie processes. In a number of cases important in 
practice, this is not of great significance, since in the region of gas 
flow that is of interest (for example, up to the nozzle section), the 
temperature does not drop enough to make this effect significant. We 
shall ignore this effect below. 

2. A plasma in low-temperature jets can be considered quasi- 
neutral, i . e . ,  in each elementary volume the number of negatively 
charged particles equals the number of positively charged particles. 
This condition is violated only with very high pressure gradients. 

3. Under the high-velocity conditions of gasdynamic transport 
that we are considering, the diffusion of electrons (and, all the more, 
of heavy partieles) can be ignored (the ratio of the velocities of dif- 
fusion and gasdynamic electron flows is approximately equal to 

De/vL ~ Ve/e/vL << 1, where D e is the coefficient of ambipolar dif- 
fusion, I e is the electron mean free path, v e is the electron velocity, 
and L is the characteristic dimension of the nozzle). This allows us to 
write the kinetic equations as differential equations of the type of (1.1), 
which represent the balance equation of the velocities of gasdynamic 
rxansport and the velocities of elernentary processes in which electrons 
participate for each streamline. 

4. The electron temperature can be considered equal to the heavy- 
particle temperature. For example, in liquid-fuel rocket nozzles, the 
electron-temperature relaxation time, which is chiefly connected with 
vibrational-rotational molecular excitation, is very small. In fact, 
in order of magnitude this time r e ~ 1/o VcnW, where o is the elec- 
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tron-scattering cross section and w is the probability of energy transfer 
(on the order of kT) in one electron-molecule collision, i . e . ,  w 

10 -z. When n ~- l0 ~~ cm "a, we have T e ~ 10 "~~ sec, i . e . ,  r e is 
usually less than the other effective relaxation times that figure in 
kinetic equation (1.1). Therefore, in the reaction rates of the ele- 
mentary processes in which electrons participate, the electron tem- 
perature can be considered equal to the heavy-particle temperature. 

It should be noted that indications have appeared recently that the 
electron-temperature relaxation time can, in fact, be considerably 
higher than that given by the relation r e ~ 1/o VenW. This is due to the 
fact that electron scattering by molecules can produce long-lived quasi- 
stationary rotationally excited states. In Some eases, therefore, the 
electron temperature, even in liquid-fuel rocket nozzles, can differ 
substantially from the heavy-particle temperature. This does not affect 
the:following discussion, since it leads only to a slight redefinition of 
the functions ~o, r and G in (1.6). 

A g r e a t  n u m b e r  of p a p e r s  h a v e  b e e n  d e v o t e d  to t he  
f r e e z i n g  p r o c e s s e s  d e s c r i b e d  by  (1 .1 ) ,  bu t  t h e s e  p a -  

p e r s  e m p l o y  o n l y  n u m e r i c a l  m e t h o d s  o r  m e t h o d s  r e -  

s u i t i n g  s o l e l y  in  r o u g h  e s t i m a t e s  [ 1 , 7 , 8 ] .  

In  c o n t r a s t ,  t h e  p r e s e n t  p a p e r  g i v e s  a c o n s i s t e n t  

a n a l y t i c  t h e o r y  of t he  f r e e z i n g  p r o c e s s e s  d e s c r i b e d  b y  

Eq.  (1.6).  T h i s  t h e o r y  i s  b a s e d  on  t he  s o l e  a s s u m p -  

t i o n  t h a t  e = k T 0 / E  i << i (i = 1 , 2 ) ,  w h i c h  c a n  u s u a l l y  

b e  c o n s i d e r e d  to be  f u l f i l l e d .  In f a c t ,  t h e  i o n i z a t i o n  

e n e r g y  Ei  i s  u s u a l l y  s e v e r a l  e V ,  and  T O d o e s  not  e x -  

t e e d  a few t h o u s a n d s  of d e g r e e s  in  t h e  e q u i p m e n t  u s u -  
a l l y  e m p l o y e d .  As  a r u l e ,  t h e r e f o r e ,  e < 0.1.  

w M a t h e m a t i c a l  S tudy  of  Eq.  (1.6) .  L e t  us  r e -  
w r i t e  (1.6)  a s  

t 
d~ ( + l  ) (2.1) ~' -d~ = q) (t)  e x p  - -  g d t  - -  ~p (t)  ~ ,  

and  i n t r o d u c e  t he  d e r i v a t i v e  g( t )  of  t he  f u n c t i o n  G(t).  

We e x a m i n e  (2.1)  u n d e r  t he  i n i t i a l  c o n d i t i o n  

(0) = ~o" (2 .2)  

G e n e r a l l y  s p e a k i n g ,  Eq.  (2.1)  c a n n o t  b e  i n t e g r a t e d  

in  e l e m e n t a r y  f u n c t i o n s .  T h e r e f o r e ,  we m u s t u s e  a s y m p -  

t o t i c  m e t h o d s  and  r e l y  on  t h e  p r e s e n c e  of t h e  p a r a m -  
e t e r s  X and  e. M a t h e m a t i c a l l y ,  we c o n s i d e r  t he  p a r a m -  

e t e r  e to  be  i n f i n i t e l y  s m a l l ,  and  1 c a n  b e  e i t h e r  f i n i t e  

o r  i n f i n i t e s i m a l  a n d  c a n  h a v e  any  o r d e r  of s m a l l n e s s  
r e l a t i v e  to e,  i . e . ,  e /X c a n  a p p r o a c h  s o m e  f i n i t e  l i m i t ,  

i n f i n i t y ,  o r  z e r o .  
The  p r o b l e m  c o n s i s t s  in  c o n s t r u c t i n g  t he  a s y m p -  

t o t i c  f o r m  of t h e  s o l u t i o n  of (2.1) and  (2.2)  in  e and  X, 

and ,  in  p a r t i c u l a r ,  in  t he  a s y m p t o t i c  r e p r e s e n t a t i o n  of 
l i m ~  ( t , e , X )  = ~oo(e,X) as  t ~ co, i . e .  , t h e  f r o z e n  c o n -  

c e n t r a t i o n .  
The properties of the solutions of (2.1) and (2.2) and the nature of 

the asymptotic form differ considerably, according to the relations 
between the parameters ~ and k. Therefore, the cases in which e ~ k 
and ~ > X will be considered separately. The main text gives a mathe- 
matical formulation of the results in the form of asymptotic formulas. 
Some aspects related to the proof of these formulas are referred to in 
the supplement. The conditions on 9, ~, and G under which this 
asymptotic form is valid are listed there. 

F i r s t  c a s e :  e_< X, in  w h i c h  e ~ O, and  X c a n  r e -  
m a i n  f i n i t e  o r  a p p r o a c h  z e r o  m o r e  s l o w l y  t h a n  e ,  o r  
t h e y  c a n  be  on  t h e  s a m e  o r d e r  of s m a l l n e s s  a s  e. In 

t h i s  c a s e ,  f o r  ~(t ,  e ,X)  we h a v e  t h e  u n i f o r m  a s y m p t o t i c  
r e p r e s e n t a t i o n  

C (x) l~ (s) - -  Ka (S)- e .<p 
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- -  ~(O)t  @ ~F(0, t) § O(e~)] .  (2.3) 

H e r e ,  I j ( s )  and  Ki ( s )  (j = 0 , 1 )  a r e  B e s s e l  f u n c t i o n s  
of  an  i m a g i n a r y  a r g u m e n t ,  

s = 2u exp - -  ~ (o) t 
2e ' 

b 
• _ r (0) ~ (0) e2 l g"-(O). X~' ~ ( a ,  b) , ( t ) d t ,  

ft  

(2.4) 

C(x)  = h',.(2n)--~o V ~ ( p ( 0 ) K o ( 2 •  (2.5)  
h (2u) + ~o l f ~  (o) Zo (2z) 

T h e  c o n v e n t i o n a l  s y m b o l  f o r  v a l u e s  t h a t  h a v e  t h e  

o r d e r  of  s m a l l n e s s  e 2 i s  O(e2). The  b o u n d  of  t he  r e -  

m a i n d e r  t e r m  O(e 2) i s  u n i f o r m  in  t o v e r  t he  e n t i r e  i n -  
f i n i t e  i n t e r v a l  0 _< t < co. 

F r o m  (2.3)  we c a n  d e r i v e  an  e x p r e s s i o n  f o r  t h e  f r o -  
z en  c o n c e n t r a t i o n  }~o(e,X), u s i n g  t he  a s y m p t o t i c  f o r m  

of  t he  B e s s e l  f u n c t i o n s  a s  s --- ~o. T h i s  e x p r e s s i o n  h a s  
t h e  f o r m  (C E i s  E u l e r ' s  c o n s t a n t ) :  

2r (0) ~(~, ;,) = ~i,r(0, ~)  § r 2 1 5  
(2.6)  

- -  CE - -  In • + 0 (e2)J -1. ~ 

Now l e t  us  c o n s i d e r  t h e  v a r i o u s  p o s s i b l e  r e l a t i o n -  

s h i p s  b e t w e e n  e a n d  1. 

a) L e t  e - -  0 and  e /X  ~ 0. In t h i s  c a s e ,  n - -  0,  

t h e  a r g u m e n t  of t he  B e s s e l  f u n c t i o n s  in  (2 .6)  i s  s m a l l ,  

a n d ,  a g a i n  u s i n g  t h e  a s y m p t o t i c  f o r m  of  t h e s e  f u n c t i o n s  

a t  s m a l l  v a l u e s  of t h e  a r g u m e n t ,  we h a v e ,  a f t e r  s o m e  

c a l c u l a t i o n s ,  

= ~- ~-o - -  e g - ~  ~o~. ~ (2.7)  

If X i s  f i n i t e ,  

a n d  i f  X i s  s m a l l ,  

o~(o)  ~ /~o  2 [- 0 (s~),  ( 2 . 8 )  
+ ~ ( f f )  (~/~0+ ~/, (o, =r 

k 
~o~ = ~. (0, o~) 

�9 --'(0, ~) g-~ ~r o (~2). 

b) L e t  e = ~ ~ 0 ( the  c a s e  in w h i c h  e and  ~ h a v e  
t h e  s a m e  o r d e r  of c o n v e r g e n c e  on z e r o  can  a l w a y s  b e  

r e d u c e d  to t h i s  c a s e ) .  In t h i s  c a s e ,  f o r m u l a  ( 2 . 6 ) g i v e s  

e 2*( ~ ~ = t~]-O)- \ g (o) 
(2 .10)  

- -  CE - - I n  1 / " ~  ( e 2 ) } .  ~(~ l + o 

S e c o n d  c a s e :  e > X. M a t h e m a t i c a l l y ,  t h i s  c a s e  c a n  
be  d e s c r i b e d  as :  X / e  ~ 0, and  e l n ( e / X )  ~ 1. The  l a t -  
t e r  r e l a t i o n  m e a n s  t h a t  X c a n n o t  a p p r o a c h  z e r o  t oo  
q u i c k l y ,  i . e .  , l i r a  e l n  (e /X)  = p as  e ~ 0 and  X ~ 0. 



Here ,  p is any (fixed) number .  We a s s u m e  that  
e l n ( e / k )  ~ 1 (since the case  of p ~ 1 can be brought  
to the case of p = 1 by a change of va r iab les ) .  The 
f rozen  concen t ra t ion  will  be given by the fo rmula  

( 2 . i l )  

where t ~ is de t e rmined  by 

t o 

! g d t = 2 e l n ~ .  (2.12) 

The s u p e r s c r i p t  ~ means  that  the funct ions g, ~ ,  
and $ a r e  taken at the point t = to. The symbol  o(e) is 
convent ional  for a quant i ty  whose o rde r  of s m a l l n e s s  
is higher  than e. 

w Calculat ion of F rozen  Concent ra t ions .  On the 
bas i s  of the genera l  f o rmu la s  obtained in w it  is easy  
to ca lcula te  f rozen concen t ra t ions  for va r ious  depen-  
dences of the gasdynamic  values  on the z -coord ina te .  
We give the ca lcula t ion  here  for gas flow with the con-  
s tant  adiabat ic  exponent  y. For  the flow of combust ion  
products  in nozzles  of l iqu id- fue l  rocke ts  this a s s u m p -  
t ion does not hold, s t r i c t l y  speaking,  s ince  the gas 
composi t ion  va r i e s  along the nozzle.  Neve r the l e s s ,  
this  a s sumpt ion  does not r e s u l t  in subs tan t i a l  e r r o r s  
if as 2/we take the quant i ty  pe r t a in ing  to the c r i t i ca l  
sec t ion  of the nozzle.  This is  because  the f rozen  e l e c -  
t ron concen t ra t ion  is  usua l ly  es tab l i shed  at sma l l  d i s -  
t ances  f rom the c r i t i ca l  sec t ion ,  at which Y does not 
have t ime  to change subs tan t ia l ly .  

Under these  a s s u m p t i o n s ,  the r e l a t i onsh ip  between 
the gasdynamic  p a r a m e t e r s  and the t ime  t is given by 
the wel l -known fo rmulas  [9] 

r~ �9 ('M), v = Mq>-'/,, 
T' vo 

~o no 7 ~- I ' 

where p is the gas densi ty.  
As the a rgumen t  we take the Mach number  M, which 

is r e l a t ed  to the coordinate  z r ead  along the nozzle 
axis (and, the re fo re ,  to t) by 

,,pv = M q ) - ~  --$(z--2) -- s.-2-~ 7 + t  
povo' - - S ( z )  - -  S ' li 2 ( T - - I )  ' 

where S is the nozzle c ross  sec t ion.  
Specific n u m e r i c a l  ca lcu la t ions  were  made when the 

shape of the nozzle  was given b y t h e  r e l a t i on  (Fig. 1) 

Z-o ~ O, S ~ S,-+,' k~z~,: S = nf~,- S o =  ~5, 2 

= =  arc tg (k/V?~). 

Fig .  1 

There fo re ,  in the above fo rmulas  we m u s t  let  

S / S  o = i . .+ ~?,, ~ = z/L, L = r0/tg~},.. �9 = L/vo: 

In the n u m e r i c a l  ca lcu la t ions  it  was also a s sumed  
that the k ine t ics  of an e l e m e n t a r y  p rocess  cor respond  
to the f i r s t  scheme of (1.2), in which the ]particle A is 
an atom of an alkal i  meta l .  In this  case ,  the r e l a t i o n -  
ship between k t and kt can,  on the bas i s  of the de -  
t a i l ed -ba l ance  p r inc ip le ,  be wr i t t en  as 

ki ' /kl  ~ (2r0'/' (h~/mekT) ''' exp (Ei /kT) .  

In other  words ,  in this case  the funct ions ~p and r 
have the form 

(~ ~- (I,~-%-l/(~-l), :~ -:  (I)-~/(~-i)~.~. 

If we conver t  in the fo rmulas  of w to the indepen-  
dent va r i ab le  M, we mus t  l e t  

"i (; ~, co) ~ ~\ r = '\ ] ( M ) d M  = F ( M  ~ ~ )  
?o ~o 

M e - -  i ,4)-1 ' (','-1) ~'~ 
/ (M) = (r + ~) kl~ (M-~Bv. _ l)' :' (M :/= ~ ), 

/ ~ )  = ~ z  
V ~ - i  

The in i t ia l  condit ions have the form ~0 = 4 (M = 1) = 
= 1 .  

For  convenience ,  we in t roduce  the following: 

~ , =  9 * L, L 

8 ' - -  8 __ g 
g(t) ' g' gO) 

~ = e x p C z = t . 7 8 i . . .  

Then, if we rewrite (2.6) in the new variables for 

A' >_ e' and (2.11) for e' > A', we arrive at the follow- 

ing standard working formulas 

yo~ = { F (-M, o~ ) - -  2e'~a'/'-ll2er ~}-i (e' > L') 

e" a~ ,/,_llwr b ~  (a(x+t)/u(v-i) b - , ~ , _  t)-%, = 2e' In ~ -  

a = l + 2 e l n ~ ,  b = I t z e ~ - ~ l l n ~ -  ; M = b V , ,  

l i  (z) + Io  (z) 
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F i g .  2 .  G r a p h s  of  Y:o a s  a f u n c t i o n  of  1/X f o r  v = 9/2 a n d  

7 = 1 .25 ( c u r v e s  1, 2 ,  a n d  3) a n d  v =9/2  a n d  7 = 1 .15 

( c u r v e s  4, 5,  a n d  6). 

With (2.1), we calculated y,o as a function of k for the following 

four combinations of the parameters v and y: 

( t )  'v = ~/2, Y = "/7', (2)  v = 9/2, y = 1 . 2 5  

(3) v = 9/2, y = t . 2 0 ;  (4)  v = ~t2, Y = t . t 5  

For each combination, calculations were made for e = 0.02, 0.04, 
and 0.06. Combination (1) corresponds to ionization in a gaseous 

medium of nondipole diatomic molecules similar to N~ under the as- 
sumption that vibrational degrees of freedom are excited. Combina- 
tions (2), (3), and (4) correspond to ionization in a gas of dipole mole- 

cules similar to H20. The calculated values are given in the table and 
in Fig. 2. To check asymptotic formulas (3.1), Eq. (2.1)wasintegrated 

exactly on a Strela computer for v = 7/2, y = 9/% and ~ = 0.04 and 
for k = 10, 1, 0.2, 0.1, 0.02, and 0.01. The values of Yoo so obtained 
are in good agreement with the values of yco given by (3.1). We thank 
E. K. Gurkovich, E. V. Chebotaev, and V. M. Martynova for making 

the calculations. 
Figure 2 cab be used to make specific calculations of the frozen 

concentration for all cases of practical interest. As an example, we 
shall calculate the frozen concentrations in the combustion products 
of a liquid-fuel rocket engine, tn this case, the main combustion 
product is HgO, and, according to [4], the first' reaction of (1.2), 
where M is an H20 molecule, can be considered astheprincipalioniza- 
tion process. With the expression for the recombination coefficient k[ 

given in [4, 5], we have 

a = ao~ 'A-21 ('c-l), r = k~'no2xM, kl' = 6.3.t0 -12 T -%. 

We assume that the water concentration does not vary substantially 

along the nozzle. On the other hand, 1/X = a0rx0 = aoT(XA/klno) 1/2. 
If, in particular, we take T O = 2500 ~ K, no = 10 z~ cm "s, r = 10 "S sec, 
and x M = 0.5, and if we assume that the primary process is the ioniza- 
tion of sodium, i . e . ,  the particle A is a Na atom, for which E 1 = 
= 5.14 eV, then ~ = 0.04, a0r = 1.1.10 l~ and 1/k = 2.3 �9 10a(XA) l/z. 
According to Fig. 2, when x A = 10 -s and x0 = 2 �9 10 "s, we obtain for 
this example 1/k = 23, xooaer = 3, and, finally, x~ = 2.7 �9 10 "l~ 

We note also that on the basis of the general formulas of [2 anum-  
ber of important qualitative conclusions can be drawn about the be- 
havior of frozen concentrations as a function of the various parameters. 
Particularly noteworthy is the fact the dependence of the frozen con- 
centration Xo~ on the concentration of the easily ionized impurity x A 
has (other conditions being given) an entirely different nature at small 
x A, defined by the inequality 

f" ! ~, = =o~.l(. &:td-&~a < f  / s  

and at rather large XA, defined by the inequality 1]k > 1/s .  
In the former case, the frozen concentration x~ depends con- 

siderably on XA (see (2.8), for example). On the other hand, as is 
immediately clear from Fig. 2, this dependence is very weak when 

1 A  > 1/s.  
In other words, the condition 1/5. = l / s ,  i . e . ,  

determines some critical value of XA, beginning with which the fro- 
zen concentration does not vary substantially. For the above numeri- 
cal example, this critical value is x~ ~ 10 "8. 

In conclusion, let us compare the exact formulas (2.6) and (2.11) 
derived in this paper for frozen concentrations with the approximate 
method (see, for example, [6], p. 447) usually used to determine xoo. 
According to this method, at 0 -< t -< t 1 the concentration x, which is 
determined by Eq. (1.1), has a quasi-stationary variation, i. e., x = 

1/2 :> = Xeq = (w/a )  , while at t - t 1 it is obtained by our integrating (1.1), 
in which w = 0 is assumed, i . e . ,  according to this estimate, 

co 

z~ =::%~ (tl) t (1 + x~ 7 (tl) A (t l, r A (h, ~ )  = f a.dt 
t, 

The time t 1 is dictated by the condition that the deviation 6x of 
the concentration from quasi-stationary, which is given by the for- 

mula 6x = --(1/2a)dln Xeq/dt, be approximately equal to xeq. 
Since the frozen concentration x~ is usually appreciably less than 

xeq(tl) , i . e . ,  Xeq(tDA(tl, ~) >> 1 and, therefore, x~ ~ 1/A(tl, ~), 
while, on the other hand, the value of t 1 introduced here coincides 
approximately, as is easily shown, with r t  ~ where t ~ is determined 
by (2.12), it follows that formula (2.11), if the term proportional to 
s is ignored, gives a result that agrees in order of magnitude with that 
obtained by the estimate usually used, which is given in [I, G, 8] and 
wh{dh is valid when k < s. However, if s < k, as can be seen from 
formula (2.6) the expression for the frozen concentration differs greatly 
from that given by the above-mentioned approximate method, and in 
this case its use is entirely unjustified. 

w Supplement, We indicate the main aspects of the proof of 

asymptotic formulas (2.3) and (2.11). 
First, let us list the main assumptions about those values in (2.1) 

for which the mathematical theory was developed. These assumptions 
are fairly natural from the point of view of physics. 

1) The quantities ~a(t), @(t), and g(t) are positive and continuously 
differentiable in 0 "< t < ~. 2) The quantity ~(t) is uniformly bounded 

Table 

V a l u e s  o f  yoo a s  a F u n c t i o n  of  1/X f o r  V a r i o u s  V a l u e s  o f  v, y ,  a n d  

Ilk 

e- -  0.02 
v = 3 . 5  e = 0.04 
T = 917 e = .0.06 

e = '0.02 
v=~,5 e =o~oi 
T = f.25 e - -  0.06 

e - -  0.02 
v = 4 . 5  e = 0:,04 
T ~- t '2  g~O.06 
v = 4 . 5  e = 0 . 0 2  
T = I . 1 5  e=0.04 

~ =  0,06 

o.1 

0.07 
0.07 
0.07 
0.07 

~ff.07 
0.07 
0.07 
0:07 
9.07 
0.07 
0.07 
0.07 

0.53 
0.56 
0 . ~  
0.5i 
0 . 5 4  
0.58 
0 57 

0.68 

0.69 
o.~2 

1.27 
t:57 
1.65, 
i .t7 

1.48 
1,52 
1,87 
2,0S 
2.02 
2.39 
3.15. 

i.65 
f .8t  
Z.Or 
1.44 
{.62 
t.83 
1.95 
2.34 
2.93 

2 .52  
3.50 
5.32 

5o 

2.04 
2.62 
3,28 
i.79 
2.29 
2.83 
2.71 
~.03 
5.78 
4:i5 
7.96 

t4.78 

100 

2.24 " 
3.01 
3.88 
1.96 
2:60 
3.30 
3.11 
4.94 
7.37 
5.1f 

f0.85 
21.55 

18 



along with its de r iva t ive  and approaches zero as t - +  ~ as a ce r t a in  

power 1/t  a ( a  > I) (we write:  ~(t) ~ 1 / t a ) ,  so tha t  

(o, ~ ) =  1 ~ (t) dt. 

9 
We note  that  formu!a (2.3) r emains  va l id  when a -< 1 (for e x a m -  

pie,  in the  ease of ion iza t ion  in  a m o n a t o m i c - g a s  med ium,  when 

.9 = 5]2 and 7 = 5 /3) .  In this case,  the f rozen concen t ra t ion  is zero, 

s ince ~(0, *9 = ~ (see r emark  1 in w 3) The quan t i ty  ~(t) ~ tP(p -> 

--> 0) and the quant i ty  ~ ' ( t )  ~ tP -x as t -~ ,o. 4) The  quant i ty  g(t) ~ 

t ' q ( 1  --< q < l )  a s t  -+ ~. 

First ease:  s -< k.  Let us convert  in (2.1) to the va r i ab l e  V = k/g ,  
whose equat ion  has the form 

(4A) 
dV ~(t) ( ' f ) dt = -- ~ V~exp - - - ~  gd t  ~-~2(t), 

k ~ o 

V (01-= ~ . -  

Let us compare  with this equa t ion  the equat ion  obta ined from it 

when we l e t  t = 0 in r ~, and g: 

dU q~ (0) . ~ [ " ~ ' ~  (4.2) 
dt = - - ~  u " e x p ~ '  e }-Jr-*(O), 

L 
u ( o ) -  ~o 

Theorem l :  For V there  is an asympto t i c  representa t ion uniform in 

O ~ t < ~ -  

g (t) == [ U (t) - -  r (0) t q- W (0, t)] -~- 6, (4.3) 

t 

'F (0, t) = t ~ (t) dt 
0 

where !6 < C 8 2 ( C i s  a constant  independent  o f k a n d  8 w h e n k a n d  r 

are suff ic ient ly  smal l ) .  

The proof of this theorem consists of wri t ing a d i f ferent ia l  equa-  
t ion for the d i f ference  A = V -- (U - ~(0)t + ~(0 , t ) ) ,  of subsequent 

conversion to an in t eg ra l  equat ion ,  and 05 obta in ing  from the l a t t e r  

an inequa l i t y  for A by the so -ca l l ed  method of a priori  bounds. 

Since we cannot  g ive  this proof here,  we shal l  b r i e f ly  exp la in  the idea  

of approx imate  r ep l acemen t  of V by the expression U - 't,(0)t + ~(0, t). 

It is i n tu i t i ve ly  c lear  that  a = V -- x)(O, t) and 13 = U -- r must  be 
s imi la r  values .  In fact ,  

{ t 
da ~ (t) 

0 

Yet  in v iew of the smallness  of s (sharp decay  of the exponent)  in  
the preexponent ia l  factor and in the exponent  i t se l t ,  the quant i t ies  can  

be rep laced  by thei r  i n i t i a l  values  wi thout  substant ia l  error. Then the 

r igh t -hand  sides of the equat ions for c~ and 8 wi l l  have ,  respec t ive ly ,  
the forms 

,%2 V "~(0) exp - - -  

and since V(O) = U(O) = k/go, then  d a / d t  ~ dB/dt,  i . e . ,  a ~ ~, and 
this is a c tua l ly  expressed in (4.3). 

The approx imate  expression (4.3) of V in terms of U is ra t ional ,  
because  Eq. (4.2) is in tegra ted  in Bessel functions of an imag ina ry  
argument ,  tha t  is, U has the form 

V'l/ *(0) CIo(s)+Ko(s) exp e(0) t (4.4) 
U = - -  ). q~ (0) CI~ (s) --  K~ (s) ~ 

where s and C are  g i v e n  by formulas (2.4) and (2.5). If we substi tute 

(4.4) into (4.3) and consider tha t  ~ = k / V ,  we arr ive at uniform asymp- 

t o t i c  representat ion,(2.3)  for g(t, s, k).  

Second case: s < s, s i n ( s / k )  ~ 1. The fol lowing procedure can  

be  used in this  case.  Beginning with t i m e  t = t ~ where t ~ is def ined 

by (2.12), we introduce the new funct ion ~ = ( s / k ) g .  Then Eq. (2.1) 

is wr i t ten  as 

f 

a ~ / - = c p ( t )  e x p \ - - T  gdt  --q~(t) qL 
to 

(4.5) 

Equation (4.5) wi l l ,  in  essence, be an equa t ion  of the type k = s 

a l ready examined ,  provided that  we take  t = t ~ as the in i t i a l  point .  

Therefore,  a l l  the  preceding reasoning can  be appl ied to gq. (4.5), 

i.  e . ,  we can  use the  fac t  tha t  when t -> t ~ the m a i n  role in the ex-  

pression exp ( - -1 /~  g dt) is p layed  by t imes  that  are ciose to t ~ and, 

therefore,  the solution can  be expressed in terms of the solution of 

the aux i l i a ry  equat ion obtained from (4.5) if  in i t  we l e t  

q ) ( t )=~p( t~  ~ ~ ( t )=~( t~162  ~ 

t 

f g d t = g ( t  ~  ~ ) = Z ~ 1 7 6  
t,* 

In this case,  however,  a question arises about the formula t ion  of 
the modif ied  in i t i a l  condi t ion  ~(t ~ = ~ 0 for Eq. (4.5).  wi thou t  g iv ing  

its der ivat ion,  the f ina l  result  is 

if we reproduce under this i n i t i a l  condi t ion  al l  of the reasoning 

that  led  to (4.3) and consider tha t  k = s, we obtain (2.11) for g~ .  
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